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Abstract 

A method of lossless compression using wavelets is presented 
that enables progressive transmission of Computational 
Fluid Dynamics (CFD) data in PLOTJD format. The float- 
ing point data is first converted to double-precision float- 
ing point format to maintain adequate precision throughout 
the transform process. It is then transformed using Haar 
wavelets - four times in two spatial dimensions, twice in the 
third spatial dimension, and twice in time for a total com- 
pression factor of 64 times. The double precision format will 
maintain enough precision during the transform to keep the 
process lossless. Next, the transformed data is compressed 
using Huffman coding and transmitted progressively using 
spectral selection. This allows most of the information to be 
transmitted in the first pass. Details are transmitted in later 
passes which ultimately provide for lossless reconstruction of 
the original data. 

1 Problem and Underlying Principles 

1.1 Introduction 

Many times in Computational Fluid Dynamics (CFD) work 
very large datasets are produced on remote machines. This 
vast amount of data must often be moved to a local ma- 
chine for post processing and visualization. However, this 
can take large amounts of time because of the large quan- 
tity of data that must be transmitted. Compressing the 
data can speed up the transmission and save several hours 
of the researchers’ time. Progressive transmission can fur- 
ther increase efficiency of the visualization process by giving 
researchers an approximation of the data very quickly. They 
can then make a decision based on this approximation about 
whether to continue the transmission or, if the data is de- 
termined to be undesirable, to abort it. 

1.2 Haar Wavelets 

This application currently uses Haar Wavelets. These are 
very simple functions with the scaling and detail filters de- 
fined in Eq. (1) and Eq. (2) respectively. 

@Hoar(t) = 
1 ifO<t<l 
0 otherwise 
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Figure 1: Example of a Multi-Zone Grid 

Number of zones in tile (if multi-zone format) 
(zone 1) i-dim j-dim k-dim 
(zone2) i-dim j-dim k-dim 

(zone n’) i-dim j-dim k-dim 

(zone 1) all x values 
all y values 
all z values 

(zone 2) all x values 
all y values 
all z values 

(zone n) all x values 
all y values 
all z values 

Figure 2: Format for Plot-3D Grid Files 

1.3 The PLOT30 File Format 

The PLOTJD file format has become a standard for deal- 
ing with curvilinear grids. Fig. 1 shows an example of 
a multi-zone curvilinear grid for the hull of a submarine. 
The hemisphere displayed in the figure is divided into four 
zones running the length of the hull and radiating outward 
as indicated by the extended sections of the grid. The three 
PLOTID file types are grid, solution, and function files. All 
of these file types support multi-zone grids [2]. Grid files 
contain the location of each point in a grid as shown in Fig. 
2. Solution files contain information global to each zone as 
well as the value of five parameters at each grid point. The 
global values are the free stream math number, the angle of 
attack, the Reynolds number, and the time (Fig. 3). The 
five parameters are density, three components of momentum, 
and energy. Function files can be user defined and are not 
dealt with in this discussion. 

385 



Number of znnes in file (if multi-zone format) 

(zone I) i-dim j-dim k-dim 
(zone 2) i-dim j-dim k-dim 

(zone n) i-dim j-dim k-dim 

(zone 1) fsmach 
alpha 
re 
time 
all density values 
all momentum (u) values 
all momentum (v) vtiues 
all momemtum (w) values 

: all energy values 

(zone I$ fsmach 
alpha 
re 
time 
all density values 
all momentum (u) values 

all momentum (v) values 
all momemtum (w) values 

all energy values 

Figure 3: Format for Plot-3D Solution Files 

Solution files are more complex than grid files, but they 
can contain redundancy that aids in compression. In the 
data sets discussed here the global attributes for all of the 
zones are the same. This allows the elimination of all but the 
first set of global attributes. Also, the density of the fluid 
(water) remains a constant of 1.0 for all of the current work. 
Since the density values make up 20 percent of each solution 
file, it gives a significant boost to compression. However, 
there are four other floating point values at each point, so 
there is much more data to compress. 

The data explored in this paper are contained in multiple 
zones. Each zone can contain either part of the structure 
being simulated or a time step in the simulation. Since we 
use the zones for separate time steps our compression tool 
only needs to deal with one file at a time. This greatly sim- 
plifies the I/O procedure. However, if the zones are used for 
different parts of the structure that have equal dimensions, 
the zones can be compressed pairwise spatially instead of in 
time. 

1.4 Floating Point Numbers and Lossless Compres- 
sion 

Floating point numbers are more difficult to compress than 
integers because their structure is more complicated. For 
example, single precision floating point numbers are com- 
posed of a sign bit, an eight bit biased exponent, and a 23 
bit mantissa (Fig. 4). Double precision floating point num- 
bers have a sign bit, an 11 bit biased exponent, and a 52 
bit mantissa. The different parts of these numbers are not 
on byte boundaries in memory, so breaking them into pieces 
requires bit manipulations. 

Another problem in lossless compression is that the num- 
ber of significant digits increases as a result of the transform 
process [l]. When numbers are added, extra bits are needed 
to keep track of the significant digits. Let P,,,,, and P,,,i,, be 
the maximum and minimum exponents in a series of floating 
point additions. Then the total number of extra bits needed 
is calculated in Eq. (3). Note that this is the worst case. 

Single Recision Floating Point Number 

31 30 23 22 0 

S-bit exponent 23-bit mantissa 

sign bit 

Double Precision Floating Point Number 

63 62 5251 0 

I I -bit exponent 52-bit mantissa 

sign bit 

Figure 4: Formats for Floating Point Numbers 

digits = P,,,,, - Pm;,, + n (3) 

where: 
min(2”) 2 number of coefficients added 

For example, the addition of five numbers requires P,,,,, - 
Pm;,, + 3 extra bits of precision because 23 is the smallest 
power of two that is greater than or equal to five. 

A mechanism must be developed to retain these extra bits. 
One way to do this is to convert the single precision floating 
point data to double precision. As long as the additions in 
the wavelet transform do not increase the precision by more 
than 52-23 = 29 bits, there will not be any lost information. 
This should not be a problem in this implementation because 
there will only be 64 numbers added per data point. These 
additions will require only n = 6 extra bits of precision as 
calculated in Eq. (3). The remaining 23 bits gained from the 
conversion to double precision can be used for shifting the 
mantissa to equalize exponents. An appropriate data set will 
not require more than 23 extra mantissa bits in each 4x4x2 
spatial footprint over two time steps so this is a reasonable 
constraint. 

After the data is transformed, it can be encoded in a vari- 
ety of ways to ensure that the correct number of significant 
digits is retained as well as provide for maximum compres- 
sion. 

2 Solution 

By taking advantage of the principles discussed above as well 
as the characteristics of the data we are using, we can imple- 
ment a reasonable solution that meets both of our goals- 
lossless compression and progressive transmission. 

After reading the data from a PLOT3D file into mem- 
ory, it can be transformed block by block. The data is first 
transformed in two spatial dimensions dividing the data into 
slices. The block size for this set of transformations is four 
by four. The results of these transforms are placed into a 
double precision floating point array to maintain the correct 
number of significant digits as discussed previously. The 
data is next transformed in the third spatial dimension us- 
ing pairs of slices. Finally, it is transformed in time (Fig. 5). 
This gives a combined compression factor of 64 to 1 if only 
the scaling terms are retained. 

After transforming the data, it is Huffman encoded based 
on a statistics file that is generated beforehand. The statis- 
tics file can be specific to a particular data file or general for 
a class of files. There is a variety of ways in which to en- 
code the transformed data. Utilizing spectral selection [3], 
bands of coefficients in each block can be coded separately. 
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slice j+l 
slice j 

timestcp n timestep n+l 

Figure 5: Structure of 4-Dimensional Data 

[ File Type Max Comp Min Comp 
grid 14.94% 13.22% 

solution 6.75% 4.62% 

Table 1: Compression Ratios 

For example, all of the scaling coefficients can be encoded 
first then the coefficients corresponding to finer resolutions 
(detail) follow. 

On the receiving end the encoded data is decoded, inverse 
transformed, and reassembled into its original form. Basi- 
cally, the process described above is reversed and repeated 
once for each spectrum of data that is received. 

Currently, a very simple Huffman coding scheme is used 
to perform the actual compression. The value of each byte of 
the transformed data is used without regard to its position 
in a double precision floating point number. These statistics 
are used to compress the data byte wise instead of per dou- 
ble precision floating point value. Although this is not the 
most efficient means of compressing the data, it reduces the 
number of entries in the statistics table from over 264 to 2*. 

3 Results 

The initial results from this scheme are very encouraging. 
Table 1 shows the compression ratios achieved in test cases 
for both grid files and solution files. Although the com- 
pression ratios for solution files are not very high, actual 
compression is only part of the goal. The progressive nature 
of the scheme also aids in transmitting the most important 
data quickly. There is great potential to improve these com- 
pression ratios in the future as will be discussed in the next 
section. 

Table 2 shows the percentage of the coefficients used to 
reconstruct the data set for each pass through the recon- 
struction algorithm. It also shows the relative size of the 
accumulated data compared to the size of the original file 
for one of the test cases. 

The reconstruction of the first pass is too coarse in many 
cases to show the researchers much (Fig. 6). The first pass 
can be combined with the second pass to save CPU time. 

1 Ret Pass ]I % Coeffs ] % Data fl 

Table 2: Reconstruction Coefficients 

The second pass (Fig. 7) provides enough resolution to en- 
able researchers to decide if a solution is acceptable or not. 
If it is unacceptable, transmission of the data can be termi- 
nated. The third pass (Fig. 8) gives a very good reconstruc- 
tion and is accurate enough to begin analysis of many aspects 
of a solution. Finally, pass 4 (Fig. 9) perfectly reconstructs 
the original data to give researchers full confidence in their 
analysis. Note that the multiresolutional representation of 
the original data is smaller than the original (PLOT3D) rep- 
resentation. 

4 Conclusions and Future Work 

The compression technique discussed here holds much 
promise for compressing three dimensional floating point 
data. There are currently few or no alternatives, so any 
work in this area provides valuable insight into nature of 
this problem. Also, since this technique transmits the most 
important data first, it provides even more compression to 
its users than is indicated by file size alone. PLOTJD files 
are a good format with which to work because they are very 
flexible and are widely used throughout the CFD commu- 
nity. 

There are still many aspects of this technique that need 
improvement. The current code can be streamlined to speed 
up the compression process. It could also work much faster if 
it was implemented on parallel machines. Another improve- 
ment could be made by examining the relationship between 
compression time and transmission time to help determine 
the optimal compression ratio. Much work can also be done 
to generalize the method for use with many different file 
structures. 

Two other areas that need to be addressed are the 
wavelets used and the Huffman coding scheme. Haar 
wavelets are most likely not the best choice for this com- 
pression scheme, so comparisons can be made with other 
wavelets to find one better suited to both this method and 
the type of data being compressed. Another promising im- 
provement is to increase the number of Huffman statistics 
tables so that different parts of the double floating point 
data we treated separately. For example, the bytes near the 
end of the mantissa will in most cases always be zero. If 
run length coding were employed here, it could have a great 
impact on the compression ratio. 

This compression and transmission scheme attempts to 
move data compression toward time-varying three dimen- 
sional scientific data instead of text and image compression, 
which have already been addressed extensively. It will hope- 
fully impact the scientific community by speeding up analy- 
sis of the vast amounts of data produced by researchers. 
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Figure 6: Reconstruction Using 1.56% of Coeffkients. Figure 8: Reconstruction Using 50% of Coefficients. 

Figure 7: Reconstruction Using 6.25% of Coefficients. Figure 9: Pass 4 - Lossless Reconstruction. 
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