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Abstract. It is often necessary to evaluate measured features of an image with
respect to estimated properties of noise incorporated with the image values. In
some cases, differential geometric methods lead to erroneous decisions arising
from the assumption of linearity of the noisy feature space. This paper intro-
duces new work in multiscale image statistics, a local framework that supports
adaptive measurement of image structure with unknown and often non-
stationary noise functions. Furthermore, it presents directional local statistics
that enable the local normalization of feature measurement, reducing biases in
noise measurement introduced by the underlying image geometry. Such meas-
urements have applicationsin nonlinear filtering and texture analysis.

1. Introduction and Background

When digital images are considered as arrays of observations made of an underlying
scene, the vocabulary and calculus of statistics may be applied to their analysis. If an
image is subject to noise in pixel measurement, it should be presented within the con-
text of either known or computed properties of the pixel values. These properties
include the sample size or raster resolution and other statistics such as the variance of
the additive noise.

This is an introduction to multiscale image statistics. It presents central moments
of the local probability distribution of intensity values. It assumes that images are
composed of piecewise ergodic regions (that is, piecewise contiguous regions where
spatial averaging may be traded for repeated measurement) for the construction of
multiscale statistics. This approach outlines the generation of the centra moments of
the local intensity histogram of any arbitrary order. Properties of some of these mo-
ments are explained, their behaviors are compared with other image processing op-
erators, and the multiscale central moments are generalized to images of two dimen-
sions. Directional versions of these multiscale statistics are also developed, and their
future uses in the normalization of feature measurements are discussed.

1.1 Statistical Analysis

Statistical pattern recognition is a discipline with a long and well-established history.
Segmentation and filtering strategies based on local and global neighbor-hood statis-
tics are well documented (e.g., Duda [6] or Jain [13]). Filters founded on the theory
of Markov processes (Markov Random Fields) [11, 2] as well as expectation-
maximization methods [5] also have a long history. Geiger and Yuille provide a
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framework for comparing these and other segmentation strategies in their survey of a
variety of different algorithms[10].

Typically, statistical methods in image processing employ the distribution of inten-
sities computed at the maximum outer scale of the image. That is, the histograms,
mixture models, or probability distribution approximations are computed across the
whole image, including al pixel values equally. Exceptions to this generalization
include the contrast enhancement methods for adaptive histogram equalization (AHE).
AHE and its derivatives (Contrast limited AHE (CLAHE), and Sharpened AHE or
(SHAHE)) construct local histograms of image intensity and compute new image
values that generate an equalized local probability distribution. [21, 3]. Other excep-
tions include Markov random fields [11] and sigma filters [17]. Questions often arise
over the priors used in sigma filters and smoothing based on Markov random fields.
Other questions arise over the selection of the neighborhood function.

1.2 Directional Analysis

Local directional image analysis techniques (including the Kirsch, Sobel, and Gabor
filters) are described in most introductory texts on image processing (e.g., [13]). Of
greater interest is the more recent development of scale-space representations along
with their differential invariants. Notably, researchers such as Koenderink [14,16], ter
Haar Romeny [22,23], Florack [8,9], Lindeberg [18,19], and Eberly [7] have contrib-
uted many papers on scale space and the invariances of scale-space derivatives.
Perona noted that directional derivatives of arbitrary order can be constructed through
linear combinations of scale-space derivatives [20]. However, this steerable property
is not limited to the Gaussian as a filter function and holds for any kernel whose n-th
order derivative exists [19].

The Hessian and other matrix forms have been used extensively in the analysis of
the height fields of images and other 2-manifolds representing solid shape. Koender-
ink describes the detection of principal curvature directions and the subsequent ex-
traction of ridges of 2-manifolds in 3-space [15]. Gueziec and Ayache extract ridges
of principal curvature as aids in registration of 3D datasets[12]. In 2D, Whitaker uses
the Hessian in his nonlinear analysis to find medial axes [26]. Similarly, Lindeberg
uses the windowed second-moment matrix, a linear algebraic operator in the analysis
of image texture [18]. Weickert applies this operator in nonlinear filtering of highly
figured data[24].

The approaches described above are not easily made invariant with respect to linear
functions of image intensity, nor are they easily generalized to multivalued functions
when the individual values cannot be considered a vector value. What is desired is a
method that is invariant to transformations such as changes in contrast or gain and
shifts of the background or baseline intensity. In this research, multiscale directional
means and directional variances of intensity are derived from their basic definitions.
Singular value decomposition of the resulting directional covariance matrix produces
eigenvalues and eigenvectors that reflect image structure. These eigenvalues have the
desired invariances with respect to rotation, tranglation, and linear functions of inten-
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sity. The work presented in this paper diverges from the more common study of the
local differential structure of images. It investigates the use of statistics of local inten-
sity distributions to illuminate image structure.

1.3 Local Statistics of Image I ntensity

As with most statistical pattern recognition systems, this research is based on the as-
sumption that the input signal follows a Gibbs distribution. Stated loosely, this im-
plies that the value for the intensity at a particular location has compact local support.
Under these conditions, it is expected that a scaled derivative measurement at a par-
ticular location or pixel is supported by the local neighborhood of surrounding pixels.
Similarly, in the context of local statistics of image patterns, a statistical measurement
is expected to be consistent over a local neighborhood. Modest changes in the size
and the location of the measurement region should induce smooth changes in the ex-
tracted statistics.

Consider the lozenge shaped object in the center of the 256 ~ 256 pixel image in
Figure 1. The foreground pixel intensity has a mean brightness of 64 units, and the
background has a mean of O units. The image has uncorrelated Gaussian-distributed
additive “white” noise, zero-mean with a standard deviation of 16 units. If distribu-
tions of local neighborhoods within the image are considered, some specific conclu-
sions can be drawn, and conjectures can be made that accurately describe the geome-
try of the image. The figure shows five histograms of five local regions from the
image. When the local region is taken from only the foreground or only from the
background intensities, a simple distribution with a single mode arises. When the
local neighborhood is evenly balanced between object and background, a symmetric
bimodal distribution is generated. Finally, when the number of foreground and back-
ground pixels is not evenly balanced, a skewed distribution results, with the skew
favoring the values that appear in greater number.

Fig. 1. Test figure with local histograms. Histograms of pixel intensities shown for the local
regions depicted by the gray circles. Note the changing symmetry of the local histograms
depending on the overlap of the neighborhood, the figure, and the background.
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As the sample neighborhood smoothly varies its location, certain patterns arise.
For example, a local region with a balanced bimodal distribution of intensities sug-
gests a boundary between two regions. As the location of the local sampling region is
perturbed, nearby locations where similar conditions of balanced bimodal intensity
distributions are exposed. Following the set of all connected loci where this condition
is met will extrude a perimeter where boundariness can be evaluated. Moreover, the
histograms themselves suggest a means of determining the strength of that boundary,
even relative to the noise in the image. The separation between the two modes can be
captured and evaluated relative to the spread or dispersion of intensity values about
the modes.

While the combined set of local histograms can be illuminating, it is both incon-
venient and unwieldy to generate and analyze a local histogram for each pixel in the
image. A more compact description of the distribution of local image intensities is
desired. One means of describing any distribution of samples is through the genera-
tion of its central moments, a series of descriptive statistics of the sample set. In the
case of image analysis, multiscale image statistics not only capture the local intensity
distribution, they can aso be calculated directly from the image without the interme-
diate step of first generating local histograms.

2 Multiscale Statistics

Without a priori knowledge of the boundaries and the object widths within an image,
locally adaptive multiscale statistical measurements are required to analyze the prob-
ability distribution across an arbitrary region of an image. This section presents mul-
tiscale image statistics, a technique developed through this research for estimating
central moments of the probability distribution of intensities at arbitrary locations
within an image across a continuously varying range of scales. Related work on the
first order absolute moment has been presented previously by Demi [4]. My research
is not a continuation, but rather a separate formal presentation of the general form of
multiscale image statistics.

Consider a set of observed values, *1(x) I R, where for purposes of discussion the
location x T R, but can easily be generalized to R'. Thevauesof ° 1(xX) may be sam-
pled over alocal neighborhood about a particular location x using a weighting func-
tion, w(x), and the convolution operation, “1(x) A w(x), where
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To avoid a preference in orientation or location, the sampling function should be in-
variant with respect to spatial translation and spatial rotation. Arguments put forward
by Babaud [1], Koenderink [14], ter Haar Romeny [11], Florack [9], and others sug-
gest that the optimal sampling function is the Gaussian G(s ,x), where the parameter s
is the sampling aperture.
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Throughout this section, multiscale statistics will be graphically illustrated using a
step edge with additive noise as an input function (see Figure 2).

Fig. 2. Anexampleinput Signal " I(x) - anoisy 1D step.
2.1 Multiscale Mean

Let the scale-space measurement comprised of a sum of the original image intensities
weighted by a Gaussian sampling kernel be the average or expected vaue of " 1(x)
over the neighborhood with an aperture of sizes. Thus:

m (x|s) =<T(x);s>=c‘iG(s,x- T(t)dt 3)
=1(x) A G(s,x)
where a I (x);sfiis read as the expected value of " 1(x) measured with aperture s.

Figure 3 shows the multiscale mean operator applied at four different scales. As
with all scale-space operators, one must balance noise suppression and precision.

as=1 b. s =16 c.s=24 d s=32

Fig. 3. 1D multiscale mean operator m,(x|s) for the input function shown in Fig. 2. Four
different aperturesare applied (a. s =1,b. s =16,c. s =24,d. s =32).

2.2 Multiscale Variance

The local variance over the neighborhood specified by the scale parameter is easily
generalized from the basic definition of central moments. Equation (4) describes the
local variance of intensity about apoint x at scale s.

m(iz)(x|s) :<(T(x)- m(x|s))2;s>
¥ - 2
=, G(s.x- H(i(t)- m(x|s))dt
=6(s, ) A [(0) - (m(x]s))?

(4)

Figure 4 shows the multiscale variance operator applied at four different scales. Note
that the maximum of the variance function localizes about the discontinuity and re-
mains in the same location as scale changes. This behavior is similar to the gradient
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magnitude operator. Both are invariant with respect to rotation and trandlation, and
both have similar responses to a given input stimulus.

as=1 b. s =16 c.s=24 d s=32

Fig. 4. m? (x|s), 1D multiscale variance operator for the function in Fig. 2. Four
different aperturesare applied. (& s =1,b. s =16,c. s =24,d. s =32).

2.3 Other Multiscale Central Moments

The general form for the multiscale central moment of order k of " I(x) is given by

) (x|s) =<(T(x)- m (x |s))k;s> (5)
=G(s,9)A 1) - mx]s))
- Ot G(s.x- (i) m(x]s)) et
Figures 5 and 6 show the multiscale responses of the 3rd and 4th order central mo-
ments of the function from Figure 3 respectively. The 3rd order central moment (re-
flecting skew) has a zero crossing at the locus of the discontinuity that persists through

changesin scale. Similarly, the 4th order moment has a local minimum at the discon-
tinuity which also persists through scale.
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Fig.5. m®(x|s) 1D multiscale 3rd order central moment operator with four ap-

ertures for thefunctioninFig. 2. (& s=1,b. s=16,c. s =24,d. s =32).

T e @0 @0 S0 1o 18a @ me  se o Tw 1sw mw me s w0 150

as=1 b. s =16 SHC. S =m24m Snd. S = 322""
Fig. 6. m%“’ (x|s), 4th order central moment operator applied to the function from

Fig.2.(aas=1,b.s=16,c.s =24,d. s =32).
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2.4 Multiscale Statistics of 2D Images

Extending the construction of multiscale statistics to images of two dimensions is
straightforward. The central moments are constrained to be invariant with respect to
rotation as well as trandation. These constraints specify an isotropic Gaussian as the
sampling kernel. The genera form for the k-th multiscale central moment for 2D
imagesis

nfe1s)=([®)- me19)ss)

=6(s.0)A(i(p)- m@1s)) ©)
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2.5 2D Examplesof Multiscale Image Statistics

In the examples presented here, the term signal to noise ratio (SNR) will refer to the
difference of the foreground intensity and the background intensity divided by the
standard deviation of the additive spatially uncorrelated noise. Figure 7 shows a noisy
computer generated image of a teardrop shape. The measured SNR per pixel within
that image has been set to 4:1 on araster resolution of 128 x 128 pixels.

Fig. 7.. A 128" 128 pixel Teardrop (SNR 4:1).

The images of Figure 8 are four local statistical measurements made of the teardrop
using an aperture whose spatial aperture is 3 pixels wide. Figure 8a shows the local
mean values. Figure 8b shows the measured local variances. Figures 8c and 8d show
the local third and fourth moments respectively. Figure 8 demonstrates aspects of
multiscale statistical representations that are significant with respect to image proc-
essing tasks. The mean image is the input processed with a Gaussian filter. The vari-
ance image reflects edge strength and is analogous to the sguared multiscale gradient
magnitude of intensity. The third order local moment measurement has a locus of
zero crossings along the boundary of the teardrop shape. This behavior is similar to
the response of the Laplacian of the Gaussian on the same image.

3 Directional Statistics

The geometry of the image introduces important directional components that make
directional sampling possible. Of interest then is a means of sampling in the direction
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a k=1
Fig. 8. Local statistical measures (k = order) of the teardrop from Fig. 7 (& local means, b:
local variance, ¢ and d: local moments of the 3rd and 4th order).

b. k=2

c. k=3

d k=4

in which the geometry of the image contributes the least bias to the statistical calcula-
tion, capturing the probability distribution of the noise rather than the structure of the
image. In scalar-valued images this typically means sampling in the direction of the
isophote. The direction of the tangent to the isophote is a sampling direction where
the image can be considered to be locally mean-ergodic.

Minimizing the value of directional local statistics by repetitive application of di-
rectional statistical operators across al orientations is not desirable. An aternativeis
to establish a matrix that captures both local geometry and local image statistics.
Once captured, this structured statistical operator can be analyzed for its eigenvalues
and eigenvectors. Such an approach yields directiona statistical analysis through a
compact set of covariances.

3.1 Multiscale Directional M eans

How can an image be sampled along a particular locus of minimal variation? Con-
sider the local directional mean of an image to be a Gaussian weighted sample along a
line. A multiscale directional mean my,(p | s) is defined as the integral along aline |
through the point p = [py, py], (thet is| is defined parametrically as|,(r) = r cosq - px
and ly(r) =r sing - py) such that

¥ 2

S AL en? b, .rsing-
M ©19)= O &1 050 pr sina- py o @

Define Gy(s,p) to be a Gaussian distribution along a line s through the origin (i.e,
parametrically, siss,(r) =r cosgand s,(r) =r sing). Gy(s,p) can be expressed as

i - P><2'Py2 2 2
T 1 g 2? jf P2 gqand Py _gn? q (8)
GalS:P) = 1572 P +py’ P2 +Dy?

1 else0

(7) can be simplified using the following notation:
m, (P |s) = Gy(s, p) A I(p) €)
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3.2 Multiscale Directional Covariances

To generalize to second order directional moments, the linear directional means must
be integrated over the sampling angle. Further, the directional variances must be
weighted for sampling in either cardinal x direction or the cardinal y direction as pro-
vided by the original Cartesian coordinate axes. This results in the following sampled
variance in the x-direction:

¥ ¥ 2

Vi =H{X22)’| = (‘)(‘lzl—zpe?(cosq((l(r €0Sq- Py,F SiNQ- py)- nhv|(p|s)))2drdq (10)
0-¥

= - §ooFal(Gy(s. A 10)?)- my (p15)f o
Similarly, the variance in the y-direction is described as:
V,, =m?
. . (11)
= §n*al(Go(s.0) A 1)) my (019 o
For simplicity of notation, both the position parameter p and the scale parameter s
have been dropped from the representation V,, and V,. The position and the scale or
measurement aperture are always implicit in these measurements.
The covariance between intensity values measured in the x-direction and in the y-
direction is described as:

Vg = nﬁ)| (Pls) (12)

=L §sinacosal(Gq(s.p) A (10)?)- m,, (o15) o

sv2p

Taken together, these statistics describe a local feature space, centered about each
pixel and normalized by the directional mean values. The resulting centered distribu-
tion hasasitsvariancea2~ 2 matrix or tensor:

éVXX
Cilpls) =g,

VU
7 13
Ny V! (13

3.3 Eigenvaluesand Eigenvectors

Since this matrix is symmetric and assuming that the rank of this matrix is not singular
(i.e., the noise or variation in the image is not limited completely to a single direc-
tional bias), amatrix D can be found that this diagonalizes this covariance matrix. D
can be shown to be arotation.

& Vylr &V 00

Xy ST _ SV uu
Dé \Y; o €0 v . ¢
&vx  Vwi é w il
_écosa sina(gV,, V,Uécosa sinal (14

g-sina cosageuﬁ\/xy VW9U§ sna cosaf
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The eigenvalues V,, and V,, represent the variance of the directionally weighted in-
tensity valuesin the direction of least and greatest variation respectively.

The direction a of the rotation matrix D indicates the direction of the two eigen-
vectors. Each eigenvector is oriented either tangentially along or perpendicular to the
direction of least variance (e.g., tangent to object boundaries). The resulting eigen-
vectors of local image variance form a local coordinate frame or statistical gauge for
geometrically invariant analysis methods.

Figure 9. shows a noisy 256 x 256 pixel image of a pair of curved objects. The
measured SNR per pixel has been set to 4:1.The images of Figure 9 are the three local
covariance measures statistical measurements made of the objects in the image using
an aperture whose spatial aperture is 6 pixels. Figure 9a and Figure 9c show the
weighted variance in the x and y-directions respectively. Figure 9b shows the related
covariance between the sampled intensities when weighted in both x and y.

a | b. C. d.
Fig. 9. Directional statistical measures. (a: input, b: Vy, €. V,, and d. Vy,) (s = 6)

Note the variations among the three images. In particular, compare Figure 9a with
Figure 9c. Where the object boundary is perpendicular to the sampling direction, the
response to the variance function is relatively higher. Where the sampling direction
tangentially grazes the sampling direction, a relatively lower response is exhibited.
With three covariance values at each pixel, a local covariance matrix is suggested.
Diagonalizing this tensor image generates the eigenvalues in Figure 10. The eigen-
values show the weighted variance tangentially along or perpendicularly across the
direction of greatest ergodicity, or constancy. In most cases this direction is either
along or it is across the object boundaries. Figure 10 also shows the limitations im-
posed by discrete images and the subsequent tolerances imposed by the sampling
theorem. In an idea case, the eigenimage V,, should reflect only the variance of the
background noise. However, the limited resolution of the available discrete methods
introduces some isotropy into the sampling kernels yielding a ghost image.

3.4 Invariancew/rt linear functions of intensity

The selection of the Gaussian function as the sampling kernel was motivated by a
desire for the sampling filter to be invariant with respect to particular transformations
of x. It may be desirable to analyze the sampled measurements of the array of " 1(x)
values in dimensionless units (i.e., invariant with respect to certain transformations of
*1). Dimensionless measurements may be obtained by normalizing the central mo-
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a b.
Fig. 10. Eigenvalues of Fig. 9. (Left: V,, Right: V,y,)
ments with powers of the square root of v, the variance of the input noise (if known).
Thatis:

1D Normalized k-th order moment: g (x |s) = "E\k/’v(j)'f) (15)

Without a priori knowledge of vy, the normalization suggested in (15) can be im-
plemented with V,, as the prior. Thisvalue is a multilocal measure of the local vari-
ance of image intensities where biases introduced by the underlying image geometry
have been suppressed.

¥ (pls)
(W

The results are dimensionless statistics that are invariant with respect to geometric
operations such as trandation and rotation, as well as linear functions of intensity
(scaling, windowing, and leveling).

2D Normalized k-th order moment:

W (pls) = (16)

4 Applicationsand Future Work

Directiona variances can be combined into dimensionless metrics for texture analysis.
A measure of anisotropy can be generated by mapping Lindeberg's anisotropy meth-
ods [18] from the partial derivatives of the windowed second-moment matrix to V,,
Vyy, and V. The resulting measure is shown in (17) and are graphically applied to a
test image in Figure 11.

: N Vi #Vyy ) 2= 4(Vyo Vi - Vi 2
Anisotropy: Q= Ve Wi/xx fvff w V) (17)

The future of this research will lie in the application of multiscale statistics to mul-
tivalued data. Research areas such as multimodal registration and multimodal seg-
mentation require metrics that are normalized across multiple incommensurable val-
ues. Where Euclidean metrics are available, vector algebra may be employed. In the
absence of such linearity, the calculus of statistics (and the use of multiscale image
statistics) is appropriate.
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Fig. 11. Segmentation of a textured test image with anisotropy metric Q
5 Conclusion

Multiscale image statistics are a new means of capturing image geometry. Through
scaled isotropic and directional statistical measurements, properties of local image
structure can be extracted. Moreover, these measurements are invariant with respect
to rotation, translation, and zoom, and they can be normalized to be invariant with
respect to linear functions of intensity. These properties may support the anaysis of
images where vector valued methods are inappropriate (i.e., in statistical comparisons
of multimodal datasets) and in modalities such as MR where there are non-stationary
properties to image noise. Multiscale image statistics are new and important tools in
image processing.
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